Hi! Assuming you’re pointing to the following:

Like this:
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
...
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
...
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
...

Like this:
class MultiHeadAttention(tf.keras.layers.Layer):
...
def call(self, v, k, q, mask):
...
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
Is this correct?
The num_heads
corresponds to h
in the diagram, if I understand it correctly:
def split_heads(self, x, batch_size):
"""Split the last dimension into (num_heads, depth).
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, 1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
So, maybe the diagram does show the linear/dense > split
order rather than split > linear/dense
. Does it make sense? Let’s also loop in @markdaoust