Slicing in custom metric or loss functions

I have written the following custom AUC metric for a two class classification problem. The output of the network is a softmax with 2 units.

class my_auc(tf.keras.metrics.Metric):
    # USAGE: metrics=[my_auc()]
    def __init__(self, name='auc', **kwargs):
        super(Metric, self).__init__(name=name, **kwargs)
        self.m0 = tf.keras.metrics.AUC()
        self.m1 = tf.keras.metrics.AUC()

    def update_state(self, y_true, y_pred, sample_weight=None):
        print("y_true.shape = ", y_true.shape)
        print("y_pred.shape", y_pred.shape)

        self.m0.update_state(y_true[:, 1], y_pred[:, 1])    # HERE THE MENTIONED ERROR OCCURS
        self.m1.update_state(y_true[:, 0], y_pred[:, 0])

    def result(self):
        return (self.m0.result() + self.m1.result())/2

    def reset_state(self):
        # The state of the metric will be reset at the start of each epoch.
        self.m0.reset_state()
        self.m1.reset_state()

The problem is that it issues the following error:

ValueError: Shapes (200,) and () are incompatible

I am sure that my model outputs 2 value for each input. And, the labels are converted to one-hot encoding.